

Staff Workshop for the 2010-2011 Investment Plan Hydrogen Technology for Transportation

September 29, 2009 Kevin Harris

Overview

- A leading manufacturer of electrolysers and fuel cells
- Canadian-based company with offices in Toronto, Belgium, Germany, and California:
 - On Site Generation Systems: HySTAT™ Electrolysers for industrial hydrogen and energy applications
 - Power Systems: HyPM™ Fuel cells for backup power and mobility applications
 - Renewable Energy Systems: Hydrogen system applications for community energy storage and smart grid
- 1,700 + hydrogen products deployed worldwide since 1948

Worldwide Hydrogen Refueling Stations

Richmond, Torrance, Diamond Bar, Chino, Chula Vista, Oakland, Rosemead, West Los Angeles (Santa Monica)

Ford, APG, Arizona

Detroit, Michigan

Minot, North Dakota

■ Toronto (4) and Vancouver, Canada

Malmo & Stockholm in Sweden

Porto, Portugal

Amsterdam, Netherlands

Barcelona, Spain

Hong Kong

Product Lines

HyPM[™] XR
Fuel Cell
Power Module
extended run
data centre
and telecom
UPS power

HyPM™ HD
Fuel Cell
Power Module
for mobility
applications

HyPX™
Fuel Cell
Power Pack
for material
handling

HyUPS™ Backup Power System

For Hydrogen; Against Nothing

- There is a great marriage between electricity/batteries and hydrogen/fuel cells
- We endorse the battery dominant, smaller fuel cell, plug-in hybrid powertrain architecture

Hydrogen as an Energy Storage and Energy Transfer Medium, and Renewable Energy Enabler

Wide Range of Complementary Solutions

Source: Electricity Storage Association

Energy Storage

Energy Storage

Buffer capacity for some minutes / hours

Energy Storage

Only hydrogen offers storage capacity for several days or weeks

Unequalled Storage Density – Utility Scale

- Tube trailer can deliver 4 to 6 MWh when used with fuel cell
- No leakage and no parasitic losses over time
- Incremental storage capacity costs of less than \$100/kWh

Renewable Energy and Energy Storage & <u>Transfer</u>

The Energy Storage Problem

- Renewable energy is driving the need for energy storage
 - Wind and solar are intermittent
 - Consumers and governments are pushing RE to higher proportions of grid mix
 - California Executive Order: 33% by 2020
- Problems occurring when RE provides >10% of the grid mix
 - Increased need for standby power and frequency regulation services
- Higher RE penetration raises the need for energy storage

Electrolysis Characteristics

- Ability to quickly cycle on and off
- High availability during periods of highest value
- Rapid response
- Distributed locations

Allows operator to enter into grid ancillary services contract – giving temporary control of electrolyser to Commercial IMET On/Off Rapid Cycle Testing. utility in exchange for lower rates or cash up front

Ancillary Services Definitions

Service	Service Description		
	Response Speed	Duration	Cycle Time
Regulation	Power sources online, on automatic generation control, that can respond rapidly to system-operator requests for up and down movements; used to track the minute-to-minute fluctuations in system load and to correct for unintended fluctuations in generator output to comply with Control Performance Standards (CPSs) 1 and 2 of the North American Reliability Council (NERC 2002)		
	~1 min	Minutes	Minutes
Spinning reserve	Power sources online, synchronized to the grid, that can increase output immediately in response to a major generator or transmission outage and can reach full output within 10 min to comply with NERC's Disturbance Control Standard (DCS)		
	Seconds to <10 min	10 to 120 min	Days
Supplemental reserve	Same as spinning reserve, but need not respond immediately; units can be offline but still must be capable of reaching full output within the required 10 min		
	<10 min	10 to 120 min	Days
Replacement reserve	Same as supplemental reserve, but with a 30-min response time; used to restore spinning and supplemental reserves to their pre-contingency status		
	<30 min	2 hours	Days
Voltage control	The injection or absorption of reactive power to maintain transmission-system voltages within required ranges		
	Seconds	Seconds	Continuous

Intermittency and with Transportation Loads Added

Rebalance with H₂ Production for Transportation/Energy Storage

Hydrogen Energy Transfer System

Hydrogen Advantages

- Long term storage
 - Hydrogen storage costs are a fraction of batteries and flow batteries
 - · Can store energy for days and weeks
 - No power dissipation

- Fueling for vehicles or other devices
- Zero emissions through entire system
- Hydrogen technology continuing to develop
 - Technical advances and cost reductions underway
 - Energy efficiency will be improved

Smart Grid Services to Lower Cost

Large-scale hydrogen fueling with demand response revenue

Demand Response = \$200k/MW/yr; Electricity cost = .08/kWh

August 6th, 2009: DOE, NREL and SRNL Complete "Real World" Driving Evaluation

2009 Toyota Highlander Gasoline Hybrid

Full Tank Range: 710 km (440 miles)

Avg. Fuel Economy: 9.0 L /100km (26 mpg)

Cost to fill up @ \$ 3.15/gal: \$ 53.31

2009 Toyota Highlander H₂ Fuel Cell Hybrid Vehicle

Full Tank Range: 690 km (431 miles)

Avg. Fuel Economy¹: 3.4 L /100km (68 mpg)

Cost to fill up @ $\$ 8/kg_{H2}$: \$ 50.71

Competitive fuel prices -> Accelerating the transition to hydrogen

Large Scale Electrolysis Accessible Today

2.5 MW (4 x 0.625MW) HYGS Module

- 32 stacks
- 485 Nm³/h, 1000 kg/day Hydrogen
- 400 Amps
- 10 barg, 150 psig
- 32,000kg
- L 6.2m x H 1.8m x W 2.5m per module

Closing Remarks Hydrogen = Energy Storage and Transfer

- Hydrogen can be considered a good form of energy storage
 - Particularly when large amounts of energy have to be stored
 - When the energy needs to be stored for long periods of time,
 e.g. days to months
- Hydrogen can be used as a energy transfer medium
 - to provide renewable-based fuel to the transportation market
 - At reasonable costs with the help of grid ancillary services contracts
- Hydrogen can help smooth out the intermittency of renewable energy sources (e.g. wind)
 - Enabling the further penetration of RE power sources into the grid mix
- End result:
 - lower petroleum consumption (increased energy independence and lower costs)
 - less air pollution
 - · less greenhouse gases

Thank You